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SUMMARY

This report covers the period from Mmy 14 to August 14, 1963.

Work was concentrated on the theoretical prediction of the mechanical

constitutive equation of laminated anisotropic plates, with special

emphasis on cross-ply and angle-ply composites. The material coefficients

are expressed as functions of lamination parameters. Through the week

ending August 9, 1963, 2625 man-hours had been expended; costs that date

were $44,605.
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SECTION 1

THEORY OF LAMINATED PLATES

I.i INTRODUCTION

The laminated plate under present investigation consists of

n plies of homogeneous anisotropic sheets. The stress-strain relation

of the k-th ply is:

_Ik) = s(k) (_F(k) (i)
i ij j

_.(k) c(k) _ (k) (2)
i = ij _ j

where 1 _ k _ n; G i = strain components; O'i = stress components;

Sil = compliance matrix; Cij = stiffness matrix; i, j = i, 2, 6;

repeated indices represent summation.

In the classical plate theory, the variables used are:

f/2 _i
Ni = stress resultant = d z

h/2
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h/2/,

Mi = stress couple = I _'i z d z
. I

V-h/2

E? = middle-plane strain
i

_i = bending curvature

where the total strain _i = C° _ii + z . Thus the constitutive

equation of a laminated anisotropic, plate, in matrix form, is

ill[:IE= "'r --° (3)
I
I

1 D I_,

where the composite material matrix is partitioned into four sub-matrices

so that:

[A] , [B] , [ D] -=Aij , Bij , Dij

(4)
h/2

=_'h/2 (i, z, z2) Cij d z

The purpose of the present investigation is to study the

nature of A, B, and D matrices as functions of material and lamination

parameters. The material parameters refer to the Cii matrix of the unit

plies; the lamination parameters to the thickness and orientation of

each ply and the total number and the stacking sequence of all the plies.
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1.2 INVERSION OF COMPOSITE MATRIX

It is often more convenient to use the inverted constitutive

equation of Equation (3). This can be easily accomplished, as follows:

Equation (3) can be written as:

N=A _°+B _ (5)

o
M=B _ +D t_, (6)

From (5) E °= A-I N- A-I B _ (7)

Substituting Equation (7) into (6) and rearranging:

M = B A "I N + ( -B A"I B + D ) _ (8)

Combining Equations (7)and (8), in matrix form:

I:lI [:Io A-I i -A"I B
!

B A-I ' D -B
|

[ iI:J
' B*A* i
!

.... - - (Io)
!

C* ' D*!

where the definitions of the star matrices are self-evident. This

equation is a partial inversion of Equation (3). The components of

_he star matrices are used as the coefficients of the differential

equation of equilibrium for laminated plates and shells. Rewriting

Equation (i0)
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G ° = A* N + B* I_, (ii)

M = C* N + D*I_. (12)

F _ Equation (12),

_(, = D*'I M - D*'I C* N (13)

Substituting Equation (13) into (12)

Qo = B* D*'I M + (A* - B* D*'I C*) N (14)

Combining Equation (13) and (14), in matrix form

!

: -,- (16)
I

P M!
t

where the definitions of the prime matrices are self-evident. This

equation is the complete inversion of Equation (3). Equation (16) is

more convenient to use if the amount of stretching and bending is given

for a given problem.
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1.3 THE CONSTITUTIVE EQUATION

Equation (3), or its alternate form as shown in Equation (I0)

or (16), is th_ most general constitutive equation for laminated

anisotropic plates and shells. Since Cij is a fourth rank symmetric

tensor, Aij, Bij and Dij must retain the same tensorial properties of

Cij , i.e., they are also fourth rank _jymmetric tensors. As defined in

Equation (4), Aii,_ B_i_ and Dij are obtained by integration along the

z-axis. This is a scalar operation, which, by definition, does not

alter the tensorial property of Cij. Thus, in general, there are

18 independent constants in the present constitutive equation.

If the plate is homogeneous, i.e., Cij is not a function of

z, then

12

Aij h2 Dij, Bij = 0 (17)

The only independent matrix is A, thus the number of independent constants

is at most six.

If he laminated plate consists of isotropic plies only, i.e.,

it is a generalized sandwich plate, then

CII = C22

C66 = (CII - C12) / 2 (18)

C_v = C26 = 0

There are only two independent constants for each unit ply, instead of

generally six constants. Thus, for a laminated isotropic plate, Aij , Bij ,

Dij each can have at most two independent constants, making a total of
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six constants. These six constants are, however, different from the

six for homogeneous anisotropic plates shown in Equation (17).

If the plate is homogeneous and isotropic, the combined

conditions of Equation (17) and (18) reduce the number of independent

constants to two.

If C.. is an even function, i.e., C.. is symmetrical with
1j ij

respect to the z = 0 plane, Bii is identically zero. The number of

independent constants for this type of laminated anisotropic plate is

reduced from 18 to 12. Since C.. cannot in general be an odd function,
Ij

A.. and D.. cannot be identically zero, with the possible exception1j 1]
of the 12, 16 and 26 components of the A.. and D.. matrices.

1J 1j
The number of independent constants for a laminated anisotropic

plate is affected by the elastic symmetry of the C.. for each unit ply.
ij

A general discussion of this subject is too lengthy for the present

purpose° Only specific types of laminated plates will be covered, i.e.,

cross-plied and angle-plied plates. It should now be pointed out that

in the process of lamination, the elastic symmetry of the original Cij ,

e.g., orthotropic, angular, cubic, isotropic symmetries, in general, is

not carried directly into the laminated plate. The level of symmetry

may be increased or decreased depending on the type of lamination. For

a given laminated plate, the elastic symmetries of Aij , Bij , and Dij
need not be the same.
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SECTION 2

CROSS-PLY COMPOSITES

2.1 LAMINATION PARAMETERS

The cross-ply composite consists of n layers of an orthotropic

material stacked with alternating orientation of 90° between layers.

The principal direction of the odd layer coincides with the x-axls, and

the even layers with the y-axis. All the odd layers have the same

thickness. The even layers also have the same thickness, which may be

different from that of the odd layers. Another lamination parameter m

is defined as the ratio between the total thickness of the odd layers

over the total thickness o_ the even layers.

The purpose of this section is to determine the composite

material matrices A, B and D as functions of the material parameter Cij

and lamination parameters m and n.

Assuming each unit layer is homogeneous, the integrations of

Equation (3) can be replaced by summations, as follows:

n

= Z c(k)Aij ij (h k + i " hk) (19)
k = i

-7-
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n

1 7 ^(k) 2• = - _.. (h2
Bij 2 _ lj k + I - bk ) (20)

k= i

n

• - u.. (h3 h ) (21)
Di 3 3 13 k + 1

k= 1

For cross-ply composites, all layers are orthotropic, so that components

of the C.. for odd layers are:
z3

CII , C22 , C12 , C66 with C16 = C26 = 0

The components of the C.. for even layers are the same as those for the
z3

odd layers except CII and C22 are interchanged.

2.2 DERIVATION OF A, B, D MATRICES

The summations of Equations (19), (20) and (21) can be expressed

in closed form for the cross-ply composite. This is accomplished by

taking advantage of the properties of series. In a straight-forward

but laborious manner one can derive the following, where F = ratio of

principal stiffnesses of the unit ply = C22 / CII = E22 / Ell:

i. For n Odd

I

All - i + m ( m + F ) h CII (22)

-8-
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A22= 1._/_.__
I +M ( 1+mF ) h C11 = l+m F

m + F All (23)

A12 = h C12
(24)

A66 = h C66
(25)

AI6 --A26 --0
(26)

Bij = 0

(27)

51= [(F-i)p+I] h--3
12 Cll (28)

= Icy i)p+i] _ h2
m+F _ All (29)

_22-- [<i-,>_+FJ _212
Cll (30)

-- [(I-P)I,+F]i+_ h2
m + F i"_ All (31)

where p = 1

(nz _ i) I

h3

D12 =: _ C12
(32)

D66 --12 C66
(33)

DI6 _ ])26= 0

(34)
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ii. For n Even

Same as the n odd case except for the following components:

m (F - I) h2 CI m (F i) h (35)BII = "B22 = I - All
n (i + m)2 n (i + m) (m + F)

h3

DII : [(F - i) Q + i ] _ CII (36)

h2 i +m

= [(F - i) Q + i ] 12 m + F All (37)

h3

D22 = [(i - F) Q + F ] T2 Cll (38)

h2 i + m AI (39)= (I - F) Q + F] 12 m + F 1

z + 8m (m-
where Q - 1 + m n2 (i + m) 3

2.3 DISCUSSIONS OF A, B, D MATRICES

Using Equations (22) and (23), All and A22 are plotted, in

dimensionless form, in Figure i. The other components of Aij are not

plotted because either they are identically zero or remain constant, as

shown in Equations (24), (25) and (26). One can conclude that for cross-

ply construction:

i) Aij remains orthotropic;

2) Aij is independent of n, the total number of plies;

-I0-
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F=I.O
!.0

o,__.__I

0.6 _-- =0.5 I
I 2 3 5 T 10

CROSS-PLY RATIO, m

F=I.O
1

0.6

NETTING ANALYSIS_

0.2,

0.0'

2 3 5 7 10

CROSS-PLY RATIO, m

FIGURE I. DIMENSIONLESS STIFFNESS COMPONENTS All AND A22
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3) All and A22 are affected drastically by both the stiffness

ratio F and the cross-ply ratio m.

4) The average stiffness ratio for filament-wound unidirectional

ply is approximately 0.3 for resin contents by weight between 15 to

30 percent. This is also plotted in Figure I. As a comparison, the

stiffness based on netting analysis, which assumes C22 = 0 or F = O, is

also shown. The difference between the two cases, the former case being

called the continuum analysis for identification and the latter the

netting analysis, is quite substantial. The cross-ply ratio, m, for

"balanced design" based on netting analysis is equal to 2.0.

The B.. is identically zero for cross-ply construction except
lj

for BII, which is equal to -B22, when n is even. Using Equation (35),

BII and B22 are plotted, in dimensionless form, in Figure 2. The

physical significance of BII can be interpreted as a measure of the

shifting of the neutral plane. The numerical value in Figure 2 repre-

sents the amount of shifting as a fraction of the total plate thickness.

The maximum amount of shifting occurs when n = 2. The shifting is

inversely proportionate with n. Hence, it becomes small for a large

number of plies. Again the difference between the netting and continuum

analyses is very significant. It is interesting to observe that this

Bij has only one independent component, i.e., BII with B22 = -BII and

BI2 = B66 = BI6 = B26 = 0. This matrix is more than orthotropic in the

sense that its level of elastic symmetry is higher than the orthotropic

case. The transformation property of the B.. is also shown in Figure 2.
lJ

BII = -B22 holds for all angles. BI2 and B66 remain identically zero.

BI6 = B26 also holds for all angles. At 45 °, BII = B22 = 0, i.e., the

shifting of the neutral plane is zero. At this orientation, the cross-

ply becomes the same as an angle-ply, for which, the neutral plane does

not shift.
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n = TOTAL NUMBER OF PLIES,

EVEN NUMBERS ONLY.
(BII = 0 FOR nOOO)

F J STIFFNESS RATIO j

F :: 0.0 NETTING ANALYSIS

_.o, ,_o , s _ -
_ CROSS-PLY RATIO, m

10-

0

0 l'r' _'4

ANGLE OF ORIENTATION

FIGURE 2. DIMENSIONLESS COUPLING TERM BI1 AND ITS TRANSFORMATION PROPERTY
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The D matrix is much more complicated than A and B above.

Since DII and D22 depend on both the total number of plies n and stiff-

ness ratio F, only a few combinations of n and F are shown in Figure 3.

Again, F = 0.0 represent the netting analysis and F = 0.3 the continuum

analysis. First of all, for cross-ply composites Jij is orthotropic.

DII and D22 approach h2 All / 12 and h2 A22 / 12, respectively, i.e,,

the cross-ply composite approaches a homogeneous plate, when:

I) m becomes large;

2) n becomes large; or

3) F becomes i.

From Figure 3, it is clear that the most expedient method of making a

laminated plate behave as a homogeneous plate within I0 percent accuracy

is to use four plies for practically all values of m and F.

Substantial difference between the continuum and netting

analyses is illustrated in Figure 3. For a given cross-ply ratio, say

m = 2, the dimensionless flexural rigidities vary significantly

depending on the number of plies, with n = 3 and 2 as the upper and

lower bounds.
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1.8

%%
% n = TOTAL NUMBER OF PLIES

1.6 % F = STIFFNESS RATIO -

% ------ : CONTINUUM ANALYSIS
n = 3 _ "- " = NETTING ANALYSIS

1.4 ._._ '...

n =*=OR F = I.O'L

0.8 _ . _'" "_"
mm Immm_ _ _j_

n =2,

0.6
2 3 5 1' 10

CROSS-PLY RATIO, m

2.5

s S

1.5 • t n:2

.0. _
n :o¢OR F- 1"--w'-

'9

n=3

0 i--, '-- ---. ---._. _
2 10

CROSS-PLY RATIO, m

FIGURE 3. DIMENSIONLESS FLEXURAL RIGIDITIES D11 AND D;_
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SECTION 3

ANGLE- PLY COMPOS ITE S

3.1 LAMINATION PARAMETERS

The angle-ply composite consists of n unit plies of an

orthotropic material with an alternating angle of orientation between

layers. The odd plies are orientated with an angle + 0 from the x-axis

and the even plies - 0. All plies have the same thJckness. The

lamination parameters for the angle-ply composite are the total number

of plies n and the lamination angle 0.

The purpose of this section is to determine the composite

material matrices A, B, D as function3 of the material parametec Cij of

the unit ply and the lamination parameters n and 8.

3.2 DERIVATION OF A, B, D MATRICES

As stated in Section 2.2, the A, B, D matrices can be obtained

by summations shown in Equations (19), (20) and (21). For angle-ply

composites, these summations can be further simplified. In fact, A, B,

D can be computed by very simple equations, which can be easily derived.

These equations are derived by expanding the su_m_ations and using the

-16-
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conditions of the angle-ply composite (symmetric orientation of unit

plies of equal thicknesses). The equations are shown in the followi_g;

where the Cij is the stiffness matrix with + 0 orientation:*

i. For n Odd

All , A22 , AI2 , A66 = h (CII , C22 , C66, C12 ) (40)

h

(AI6' A26) = n (C16' C26) (41)

B. , = 0 (42)
xj

h3

(DII , D22 , DI2 , D66 ) = _ (CII, C22 , C12, C66) (43)

= h3 n2
(DI6' D26) I-_ ( 3 n3 - 2 ) (C16, C26) (44)

ii. For n Odd

Same as the n even case except for the following

components:

AI6 = A26 = 0 (45)

h 2

(BI6, B26 ) = - _- (C16 , C26 ) (46)

D16 = D26 = 0 (47)

*The C for - 0 orientation is equal to that of the + 0 orientation

excep_Jthe sign for C16 and C26 is changed.
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3.3 DISCUSSIONS OF A_ B, D MATRICES

The absolute values of All for a representative filament-

wound angle-ply composite is plotted against the lamination angle

in Figure 4. The other components of A.. are also shown in Figure 4
lj

in dimensionless form. All , A22, AI2 and A66 are independent of the

number of plies, n. AI6 and A26 , however, are dependent on n. When

n even, they are zero. When n odd, AI6 and A26 are inversely propor-

tionate with n. Thus, the maximum absolute values for AI6 and A26

occur when n = 3. It is interesting to know that for n even A.. is
lj

orthotropic, for n odd it is not orthotropic because the plane of

elastic symmetry is destroyed. For the latter case, the number of

independent constants is six. This is a truly acisotropic system,

corresponding to the triclinic case for three dimensional bodies. Also

shown in Figure 4 is the commonly used lamination angle of 53-3/4 °,

which is conceived as the optimum angle for internally pressured

vessels using the netting analysis. From the standpoint of continuum

analysis, there is no apparent reason to restrict the use of the

lamination angle to one specific value.

The B matrix for angle-ply composites is identically

zero for n odd, and components for n even. The dimensionless BI6 is

plotted in Figure 5. The significance of this ratio can be seen, as

follows:

_or uniaxial extension, the only non-zero component on the

right-hand-side of Equation (3) is C ° Expanding Equation (3)I"

NI = All G°l

N2 = AI2 G°l
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_'1.,,= ,
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;- (NETTING ANALYSIS)
I
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FIGURE 4. All AND DIMENSIONLESS Aij FOR REPRESENTATIVE
FILAMENT-WOUND ANGLE- PLY
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e = 54- 3/4 °
(NETTING

n=2

o.o. //-\\
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/ ,n=8
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FIGURE 5. DIMENSIONLESS BI6 ANO D16 FOR REPRESENTATIVE
FILAMENT-WOUND ANGLE - PLY
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N6 = AI 6 _ oi=0

(48)

MI = B11 _ oi--0

M2 = BI2 E oi=0

M6 = BI 6 _ Ol

Thus

BI6 M6
- (49)

h All h N1

This ratio signifies the ratio of the induced twisting moment to the

in-plane stress resultant. From this ratio one can then compute the

ratio of the shear stress over the normal stress for the uniaxial

extension. Similarly, one can show

B26 M6
- (50)

h A22 h N2

This latter ratio has the same numerical value as Equation (49) except

the complement of the lamination angle is used for the abscissa.

The case of cross-coupling due to the non-vanishing BI6 and

B26 was discussed by Reissner and Stavsky* for a two-layer angle-ply.

* "Bending and Stretching of Certain Types of Heterogeneous Aeolotropic

Elastic Plates," Journal of Appl. Mechanics , Paper 61-APM-21, 1961.
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From Figure 5, it is clear that this coupling for a representative

filament-wound composite is relatively weak. The coupling effect

weakens very rapidly as n increases or 0 deviates from 45 °.

The D matrix for n even remains or hotropic. For n odd,

D deviates markedly from orthotropic symmetry as can be seen from

Figure 5 - the dimensionlLss DI6 is 0.30 for n = 3. This means that

for simple bending, the induced twisting moment is 30 percent of the

induced bending moment. This is a very strong coupling and it does

not decrease too rapidly as n increases. The ratio of 12 D26 / h2 A22

is the same as the dimensionless DI6 if the complement of the lamina-

tion angle is used.
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SECTION 4

CONCLUSIONS

It is seen that the lamination of orthotropic unit plies can

generate a number of interesting composite properties. Drastic

variations can be made by changing the lamination parameters. Netting

analysis, on the other hand, takes m into account only for the cross-

ply and @ only for the angle-ply. The total number of plies, n, and

the sequence of stacking are assumed to be immaterial. In an approxi-

mate manner, netting analysis takes into account the A matrix, but it

agnores the B and D matrices.

Based on the continuum analysis, a number of materials

optimization programs can be readily accomplished. Even for simple

laminated plates and shells like the cross-ply and angle-ply, one has

at his disposal sufficient lamination parameters to produce a wide range

of desired composite properties. When this is coupled with the possible

optimizations in the unit plies, for example, the unidirectionel

filament-wound systems described in the First Quarterly Report of this

contract,* a very wide range of controllable variations in composite

materials is possible.

*S. W. Tsai, "Structural Behavior of Composite Materials," First Quarterly

Technical Report, Aeronutronic Publication #U-2122, May 24, 1963.
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One interesting feature of laminated plates and shells is

the transformation property of the composite mater_l matrices A, B_

and D. These matrices in general have different types of elastic

symmetry from the symmetry of the original unit ply. If the unit

plies are isotropic, with the properties of the odd plies different

from those of the even plies, the distinction between cross-ply and

angle-ply no longer exists. The A, B, and D matrices remain isotropic

but they are independent. If the unit plies are orthotropic, as the

case of unidirectional filament-wound systems, the resulting A, B, and

D matrices may vary from the state of isotropy to complete anisotropy

depending on the lamination parameters.

If one can produce a laminated plate of shell such that:

All = A22,

A66 = (All - AI2) / 2

(53)

AI6 = A26 = 0

Bij = 0

= h3
and Dij Aij / 12

this laminated construction will behave as a homogeneous isotropic plate.*

One can also build a laminated composite with other types of elastic

symmetries, which can range from cubic, angular, and orthotropic

*An application of this principle is being investigated by Mr. E.

Scheyhing, Yale University, New Haven, Connecticut.
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symmetries to completely anisotropic state. Or one can build a composite

that has either gross homogeneity or varied degrees of heterogeneity.

With a thorough understanding of the nature of the constitutive equation

of laminated plates and shells a structural designer has at his disposal

a new dimension in optimizing his design.

The experimental verification of the theoretical results of

this report is in progress and will be presented in the future. The

verification will be carried out in both plates and cylindrical pressure

vessels.
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